54 research outputs found

    Storage and recall of weak coherent optical pulses with an efficiency of 25%

    Full text link
    We demonstrate experimentally a quantum memory scheme for the storage of weak coherent light pulses in an inhomogeneously broadened optical transition in a Pr^{3+}: YSO crystal at 2.1 K. Precise optical pumping using a frequency stable (about 1kHz linewidth) laser is employed to create a highly controllable Atomic Frequency Comb (AFC) structure. We report single photon storage and retrieval efficiencies of 25%, based on coherent photon echo type re-emission in the forward direction. The coherence property of the quantum memory is proved through interference between a super Gaussian pulse and the emitted echo. Backward retrieval of the photon echo emission has potential for increasing storage and recall efficiency.Comment: 5,

    Experimental and numerical investigation of the origin of surface roughness in laser powder bed fused overhang regions

    Get PDF
    Surface roughness of laser powder bed fusion (L-PBF) printed overhang regions is a major contributor to deteriorated shape accuracy/surface quality. This study investigates the mechanisms behind the evolution of surface roughness (Ra) in overhang regions. The evolution of surface morphology is the result of a combination of border track contour, powder adhesion, warp deformation, and dross formation, which is strongly related to the overhang angle (θ). When 0° ≤ θ ≤ 15°, the overhang angle does not affect Ra significantly since only a small area of the melt pool boundaries contacts the powder bed resulting in slight powder adhesion. When 15° 50°, large waviness of the overhang contour, adhesion of powder clusters, severe warp deformation and dross formation increase Ra sharply

    New insight into the loss of adhesion of ZnMg-Zn bi-layered coatings on steel substrates

    Get PDF
    In this research, physically vapor deposited Mg-Zn and ZnMg-Zn bi-layered coatings were annealed at 180 °C for different annealing times to study the origin of the adhesion loss during heat treatment. In the case of Mg-Zn bi-layered coatings, it was observed that MgZn2 and Mg2Zn11 intermetallics are formed during annealing from Zn and Mg by diffusion, which results in a reduction of the thickness of the initial pure zinc interlayer. In the case of ZnMg-Zn bi-layered coating, the “interfacial adhesion strength” at the ZnMg/Zn interface was quantified by using scratch test. The novel finding is that the adhesion strength of as-deposited coatings at the interface of ZnMg/Zn is independent of the thickness of the zinc interlayer (tZn). tZn decreases gradually during annealing at 180 °C. The “adhesion performance” of the studied coatings, as tested by BMW crash adhesion test (BMW AA-M223), drops drastically when tZn is less than a threshold (~ 500 nm). The obtained results indicate that tZn plays the significant role in the adhesion performance of ZnMg-Zn bi-layered coatings

    Microstructure and adhesion strength quantification of PVD bi-layered ZnMg-Zn coatings on DP800 steel

    Get PDF
    In this study, ZnMg-Zn bi-layered coatings with different Mg contents, a single layer ZnMg coating and a pure zinc coating are deposited on steel substrates by physical vapor deposition (PVD) process. A set of experiments and simulations are performed to study the microstructure, mechanical properties and adhesion behavior of the PVD coatings. It is found that Mg2Zn11 and MgZn2 form in the microstructure of the ZnMg top layer with increasing Mg content. MgZn2 fully covers the microstructure at 14.1 wt% Mg. Scratch tests are carried out to quantify the adhesion strength of the coatings. It is observed that ZnMg single layer coating shows poor adhesion to the steel substrate and the addition of a Zn interlayer is essential for enhancing the adhesion strength. It was found that the measured critical load (L-C) in scratch test is not a suitable criterion to evaluate the adhesion strength of ZnMg-Zn bi-layer coatings with different combination of thickness and/or mechanical properties. Instead, the Benjamin-Weaver model is modified to quantify the adhesion strength at ZnMg/Zn interface by scratch test revealing consistent results with the BMW crash adhesion test (BMW AA-M223) currently used in industry for adhesion qualification

    Towards an eficient atomic frequency comb quantum memory

    Full text link
    We present an efficient photon-echo experiment based on atomic frequency combs [Phys. Rev. A 79, 052329 (2009)]. Echoes containing an energy of up to 35% of that of the input pulse are observed in a Pr3+-doped Y2SiO5 crystal. This material allows for the precise spectral holeburning needed to make a sharp and highly absorbing comb structure. We compare our results with a simple theoretical model with satisfactory agreement. Our results show that atomic frequency combs has the potential for high-efficiency storage of single photons as required in future long-distance communication based on quantum repeaters.Comment: 10 pages, 5 figure

    Quantum Storage of Photonic Entanglement in a Crystal

    Full text link
    Entanglement is the fundamental characteristic of quantum physics. Large experimental efforts are devoted to harness entanglement between various physical systems. In particular, entanglement between light and material systems is interesting due to their prospective roles as "flying" and stationary qubits in future quantum information technologies, such as quantum repeaters and quantum networks. Here we report the first demonstration of entanglement between a photon at telecommunication wavelength and a single collective atomic excitation stored in a crystal. One photon from an energy-time entangled pair is mapped onto a crystal and then released into a well-defined spatial mode after a predetermined storage time. The other photon is at telecommunication wavelength and is sent directly through a 50 m fiber link to an analyzer. Successful transfer of entanglement to the crystal and back is proven by a violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality by almost three standard deviations (S=2.64+/-0.23). These results represent an important step towards quantum communication technologies based on solid-state devices. In particular, our resources pave the way for building efficient multiplexed quantum repeaters for long-distance quantum networks.Comment: 5 pages, 3 figures + supplementary information; fixed typo in ref. [36

    Heralded quantum entanglement between two crystals

    Full text link
    Quantum networks require the crucial ability to entangle quantum nodes. A prominent example is the quantum repeater which allows overcoming the distance barrier of direct transmission of single photons, provided remote quantum memories can be entangled in a heralded fashion. Here we report the observation of heralded entanglement between two ensembles of rare-earth-ions doped into separate crystals. A heralded single photon is sent through a 50/50 beamsplitter, creating a single-photon entangled state delocalized between two spatial modes. The quantum state of each mode is subsequently mapped onto a crystal, leading to an entangled state consisting of a single collective excitation delocalized between two crystals. This entanglement is revealed by mapping it back to optical modes and by estimating the concurrence of the retrieved light state. Our results highlight the potential of rare-earth-ions doped crystals for entangled quantum nodes and bring quantum networks based on solid-state resources one step closer.Comment: 10 pages, 5 figure

    Slow light for deep tissue imaging with ultrasound modulation

    Get PDF
    Slow light has been extensively studied for applications ranging from optical delay lines to single photon quantum storage. Here, we show that the time delay of slow-light significantly improves the performance of the narrowband spectral filters needed to optically detect ultrasound from deep inside highly scatteringtissue. We demonstrate this capability with a 9 cm thick tissue phantom, having 10 cm^(−1) reduced scattering coefficient, and achieve an unprecedented background-free signal. Based on the data, we project real time imaging at video rates in even thicker phantoms and possibly deep enough into real tissue for clinical applications like early cancer detection

    Insight into blood pressure targets for universal coverage of hypertension services in Iran: the 2017 ACC/AHA versus JNC 8 hypertension guidelines

    Get PDF
    BACKGROUND: We compared the prevalence, awareness, treatment, and control of hypertension in Iran based on two hypertension guidelines; the 2017 ACC/AHA -with an aggressive blood pressure target of 130/80 mmHg- and the commonly used JNC8 guideline cut-off of 140/90 mmHg. We shed light on the implications of the 2017 ACC/AHA for population subgroups and high-risk individuals who were eligible for non-pharmacologic and pharmacologic therapies. METHODS: Data was obtained from the Iran national STEPS 2016 study. Participants included 27,738 adults aged ≥25 years as a representative sample of Iranians. Regression models of survey design were used to examine the determinants of prevalence, awareness, treatment, and control of hypertension. RESULTS: The prevalence of hypertension based on JNC8 was 29.9% (95% CI: 29.2-30.6), which soared to 53.7% (52.9-54.4) based on the 2017 ACC/AHA. The percentage of awareness, treatment, and control were 59.2% (58.0-60.3), 80.2% (78.9-81.4), and 39.1% (37.4-40.7) based on JNC8, which dropped to 37.1% (36.2-38.0), 71.3% (69.9-72.7), and 19.6% (18.3-21.0), respectively, by applying the 2017 ACC/AHA. Based on the new guideline, adults aged 25-34 years had the largest increase in prevalence (from 7.3 to 30.7%). They also had the lowest awareness and treatment rate, contrary to the highest control rate (36.5%) between age groups. Compared with JNC8, based on the 2017 ACC/AHA, 24, 15, 17, and 11% more individuals with dyslipidaemia, high triglycerides, diabetes, and cardiovascular disease events, respectively, fell into the hypertensive category. Yet, based on the 2017 ACC/AHA, 68.2% of individuals falling into the hypertensive category were eligible for receiving pharmacologic therapy (versus 95.7% in JNC8). LDL cholesterol< 130 mg/dL, sufficient physical activity (Metabolic Equivalents≥600/week), and Body Mass Index were found to change blood pressure by - 3.56(- 4.38, - 2.74), - 2.04(- 2.58, - 1.50), and 0.48(0.42, 0.53) mmHg, respectively. CONCLUSIONS: Switching from JNC8 to 2017 ACC/AHA sharply increased the prevalence and drastically decreased the awareness, treatment, and control in Iran. Based on the 2017 ACC/AHA, more young adults and those with chronic comorbidities fell into the hypertensive category; these individuals might benefit from earlier interventions such as lifestyle modifications. The low control rate among individuals receiving treatment warrants a critical review of hypertension services
    corecore